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J.  Phys. A: Math. Gen. 13 (1980) 2457-2463. Printed in Great Britain 

Bond percolation in a square lattice in presence of a 
‘magnetic field’? 

P Murilo Oliveira, S L A de Queiroz, Rosane Riera and C M Chaves 
Department of Physics, Pontificia Universidade Catblica, 22453 Rio de Janeiro, Brazil 

Received 12 October 1979, in final form 14 January 1980 

Abstract. We present a calculation of the bond percolation problem in a square lattice in 
presence of a ‘magnetic field’, using the position space renormalisation group and cells of 
dimension b x b, where b runs from 2 up to 5. Due to symmetry, the calculation splits into 
two parts, one determining the ‘thermal’ exponent U and the other, the ‘magnetic’ exponent 
7. For the largest cell in each case, we get v = 1.355 ( b  = 5) and 7 = 0.244 (b  = 4), in good 
agreement with series results of Dunn et al. Comments are made on the extrapolation of the 
results to b = CO. 

1. Introduction 

We have calculated the critical exponents for the bond percolation problem in a square 
lattice in presence of a ‘magnetic field’. The ‘magnetic field’ is simulated by the 
introduction of a ‘ghost’ site, connected to every lattice site by ‘ghost’ bonds having 
probability h of being active (Kasteleyn and Fortuin 1969, Reynolds et a1 1977, 
Marland and Stinchcombe 1977). 

We use the position space renormalisation group (PSRG) (Young and Stinchcombe 
1975, Reynolds et a1 1977). First, we recall some features of PSRG regarding its 
application to percolation. Consider for simplicity a finite b x b square lattice with its 
N = 2b2 nearest-neighbour bonds (figure l), each having probability p of being active. 
One can count, out of the 2N possible configurations, those in which it is possible to go 
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Figure 1. A finite b x b  square lattice; note that the horizontal bonds in row b + 1  are not 
present; analogously for column b + 1; white sites are empty. In this way, such a cell can 
reproduce the infinite square lattice, through proper translations. 
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from row (or column) 1 to row (or column) b + 1 by passing only through active bonds. 
Such configurations will be called ‘percolating’; this is OUT definition of percolation. Of 
course, the probability that such a lattice ‘percolates’ is given by 

p b ( p ) = c  pL(l-p)N-L (1) 

where L is the number of active bonds in a given percolating configuration, and the sum 
extends over all such configurations. Our definition of pb(p) is the same as the definition 
of the probability S , ( p )  of Seymour and Welsh (1978) for the ‘sponge percolation’ 
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Figure 2. A plot of P b ( p )  for finite values of b, and the extrapolation for b ;f CO. 

problem. The behaviour of pb(p) is plotted in figure 2, where it is also shown that for 
b+w we expect to have 

P&)=[ 0 p < ;  9 

1 p > $  

according to the accepted result that the critical probability for bond percolation in a 
square lattice is 3. See Seymour and Welsh (1978), Russo (1978) for a detailed 
discussion of this point. All curves cross at the point p = 4 (see 8 2 for comments). The 
PSRG procedures overcome the practical impossibility of exactly calculating p b  ( p )  for 
large values of b by imagining, say, a b2 x b 2  square lattice, built up by cells of size b X 6,  
and approximating the ‘percolation’ probability &(p) by the iterated probability 
Pb[Pb(p)], where Pb(p) is the exact probability of getting across a cell, and approximates 
the probability p ’  of having two nearest-neighbour sites connected in the renormalised 
lattice (see figure 3). As the iterations are repeated, one expects to simulate the 
behaviour of the true infinite lattice. 

In the present case, there are two probabilities, p and h, to be considered; hence, we 
shall have two recursion relations. If renormalised probabilities are denoted by a 
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Figure 3. A schematic plot of the PSRG procedure. See text for further details. 

prime, one has, after one iteration and for a given b (see figures 4 and 3, 
p ’ = P b ( p ,  h )  

h’ = H b b ,  h )  = hRb(P, h )  
where h is the probability of a ‘ghost’ bond being active; Pb(p ,  h )  is the probability of 
‘getting across’ the cell, including also all possible paths through the ghost site. Hb(p,  h )  
is the probability of reaching the ghost site starting from given points in the original cell 
(see 0 3 ) .  In ( 2 6 )  we have factored out h ;  this clearly is always possible. 

From ( 2 )  it follows that the fixed point is p = p*  and h = h” = 0, where p *  is the fixed 
point of the corresponding recursion relation in absence of the magnetic field (Nie- 
meyer and Van Leeuwen 1974). In other words, p ”  is the fixed point of 

p ’  = P b ( P ,  0 )  = P b  ( P I .  (3) 
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Figure 4. (a) A 3 X 3 cell in the original lattice; each bond has probability p of being active. 
It is transformed by PSRG into the cell in ( b ) ,  where now each bond has probability p ‘  of 
being active. Note that both cells reproduce the lattice by suitable translations. Following 
Tsallis (1978) we collapse the ‘entries’ and ‘exits’ of the cell and eliminate the external 
lateral bonds, since they do not contribute for vertical percolation, thus obtaining the 
diagram in ( c ) .  This one is further reduced to series and parallel combinations. 

10 1 
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Figure 5. ( a )  A 2 x 2 cell with a ghost site (g). The wavy lines represent the ghost bonds, 
with a probability h associated to each. h‘ is the renormalised probability of reaching the 
ghost site. Taking points 1 ,2  and 3 as entries and using the procedure described in figure 4, 
we arrive at the diagram shown in (b ) .  

Now, consider the matrix A which has as its elements a l l  = a p ‘ / d p ,  a12 = ap’ /ah,  
a21 = ah’/ap and a22 = ah‘/ah, where the derivatives are evaluated at the fixed point. As 
~2~ = 0, it follows that the ‘thermal’ eigenvalue is A 1  = a l l ,  and the ‘magnetic’ eigen- 
value is A 2  = a22. 

The exponents v and r ]  (Reynolds et a1 1977) are then given by 

In b 2 In A 2  
In A1 In b 

v=- and 77=d+2-- 

where d = 2 is the space dimensionality. From these expressions, together with the 
scaling relations, all other exponents can be obtained. 

2. The exponent v 

The above discussion shows that the determination of the exponent v is independent of 
the presence of a ‘magnetic field’, as it should be; we need only consider the recursion 
relation (3). We have worked out this relation exactly for b = 2, 3, 4 and 5. These 
recursion relations are generated through a computer program and make use of the 
simplifying procedures introduced by Tsallis (1978) for reducing the cells to series and 
parallel combinations. 

Following the definition of percolation stated in 9 1, we consider for p ’ ,  in the case 
b = 3 (see figure 4), all paths beginning at points 1 , 2  or 3 and leaving the cell through a 
vertical bond which begins at points 7, 8 or 9; and similarly for other values of b. It 
should be noticed that in more complicated cases, such as the ‘magnetic’ case (see 9 3), 
or if there are both first- and second-neighbour bonds, many definitions of percolation 
might at first sight seem reasonable, and in general give quite different results for the 
critical exponents. This question will be discussed with further details in a future paper 
on a more general bond percolation problem. 

The degrees and numerical coefficients of the polynomials increase rapidly with b ; 
for b = 5, the recursion relation is of degree 41. For b = 2, for instance, 

p ’  = 2p2+2p3 - 5p4+2p5. 

The critical probability is pc = p *  = 5, for all polynomials we have calculated. In fact, 
it is always d for any b, provided the cell has the appropriate symmetry as in figure 1. This 
can be seen from the following reasoning. The recursion relation, for a given b, has the 
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form 
p '  = c CnpnqN-" 

n 
(4) 

with q = 1 - p .  Cn is the number of configurations of n active bonds such that the cell can 
be traversed in a given direction, say, vertically. The sum in (4) runs from the minimum 
number of active bonds needed for traversing the cell-which is clearly equal to 6-up 
to the total number N = 2 b Z  of bonds in the cell. Now we state, using symmetry 
considerations, that the probability q' = 1 - p '  that the cell does not percolate is given by 
(4), exchanging p and q, i.e. 

q 1  = CnqnpN-" 
n 

with the same coefficients Cn. These coefficients are now interpreted as giving the 
number of configurations of n non-active bonds such that we do not succeed in 
traversing the cell. This can be seen by relating each configuration of the bonds in the 
cell to a complementary configuration in the dual cell, built up by drawing a bond 
crossing each one on the original cell. Each bond in the dual cell is considered as 
non-active if the crossed bond on the original cell is active, and vice versa. Thus, to each 
vertical percolating configuration in the cell corresponds a horizontal non-percolating 
configuration in the dual cell. As the cell in figure 1 is self-dual for any value of b, 
equality of the coefficients Cn follows immediately. 

Clearly, from (4) and (5) we can conclude that if p = q we shall have p' = q', hence 
pc = p *  = is a fixed point (Sykes and Essam 1963,1964). See also Seymour and Welsh 
(1 978). 

The calculated values of v for each b are displayed in table 1. The reader may verify 
that the results show a fairly rapid convergence towards the accepted value Y = 
1.34*0.02 (Dunn et a1 1975). 

Table 1. Calculated values of the exponents Y and 9 for several values of b. 

b Y I) 

2 1,428 0.186 
3 1.380 0.228 
4 1.363 0.244 
5 1.355 - 
03 (*) 1.341 0.301 

(*) extrapolated (see text). 

3. The exponent 17 

Having established that (2a) always allows p *  = as a fixed point for our diagrams, it is 
clear that we need not work out explicitly equation (2a)  as far as the exponent 7 is 
concerned. Also, due to the fact that h* = 0, all we need is (2b) to first order in h. So we 
rewrite ( 2 b )  as 

h' = hRi ( p )  + O(h2)  

and then h2 = R:(l/2). 
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In order to calculate h’, the renormalised probability of reaching the ‘ghost’ site, we 
take points 1 , 2  or 3 as entry points in the case b = 2 (see figure 5) and analogously for 
larger b. That is, we take into account all paths arriving at the ‘ghost’ site which begin at 
any point on the external boundaries of the cell. Had we taken only points 1 and 2 as 
entry points, we would have got rather different values for the exponent 7. In the case 
considered in 0 2, it makes sense to consider only points 1 and 2 of figure 5 as entries, 
since we would then be concerned with ‘vertical’ percolation. However, for h’ this 
distinction does not apply, and we must consider all paths, coming from below or from 
the left, such that they reach the ‘ghost’ site. 

We have worked out the recursion relations R: ( p )  for b = 2,3, and 4. For b = 2, for 
instance, 

Rg ( p )  = 3 + 2p - p 2 .  

The calculated values for the exponent 77 are displayed in table 1. 

4. Discussion 

If we extrapolate our results to b + 00, by plotting Y against l /b2 ,  we get Y, = 1.341. 
Although this extrapolation is not quite rigorous in our case, since our values oi b 

might be far from the asymptotic region, from figure 1 of Reynolds et a1 (1978) it can be 
seen that a plot of In A 1  against In b is a straight line down to small values of b. Our best 
plot was, instead, of I )  against l / b 2  and a least-squares fit gave a straight line to one part 
in 10’. Note that 2b2 is the number of bonds in the b x b cell. 

For the exponent 77 the situation is more complicated. The value of 7) is somewhat 
uncertain and runs from 7 = 0.224 to p )  = 0.187 (Dunn et a1 1975, Sykes et a1 1976, 
Reynolds et a1 1978, Dasgupta 1976). Our results for 77 (for b 2 3) are higher than these 
and seem to be increasing with 6,  although it is not certain that we can extrapolate our 
results to b -+ 00 in this case. 

Using the seriesvalues p=@138 (Sykes etal 1976), Y = 1.34 (Dunn etal 1975) and 
the scaling relations, we find 77 -I- 0.206 and then y2 = 1.897, where A 2  = by’. If we 
extrapolate our y 2  by plotting In h2 against In b, as in Reynolds et a1 (1978), the slope 
gives y z  = 1.850, which differs by only 2.5% from the above result. Nevertheless, the 
exponent 77 is very sensitive to this small variation in y 2  and for that reason, in our 
opinion, the question of calculating magnetic exponents through the position space 
renormalisation techniques deserves more attention. 
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